
Atrial fibrillation (AF) is common and is associated with significant

cardiovascular morbidity and mortality, with stroke being the 

most critical complication.1,2 Drugs presently used for AF therapy 

have major limitations, including incomplete efficacy and risks of 

life-threatening proarrhythmic events (antiarrhythmic drugs) and

bleeding complications (anticoagulants).3 Non-pharmacological

ablation procedures are efficient and apparently safe, but only a

small number of patients can be treated.4–6 These limitations largely

result from the limited knowledge about the underlying mechanisms

of AF. There is a hope that a better understanding of the molecular

basis of AF may uncover safer and more effective therapeutic

targets. In this article, current knowledge about AF-related ion-

channel remodelling is reviewed and how such remodelling might

affect the efficacy of antiarrhythmic drugs is discussed.

Fundamental Atrial Fibrillation Mechanisms
The mechanisms underlying AF induction and maintenance are

incompletely understood, but it is generally accepted that re-entry is

the major mechanism of AF maintenance. Re-entry induction

requires an appropriate vulnerable substrate, as well as a trigger that

initiates re-entry within the substrate (see Figure 1). 

Single-circuit re-entry can maintain AF by functioning as a rapid

driver that induces fibrillatory conduction. Multiple-circuit re-entry

involves coexisting functional re-entry-circuits that maintain

fibrillatory activity because the rate of new-circuit formation exceeds

the rate of circuit extinction, continuously maintaining AF episodes.

The likelihood of re-entry is determined by the tissue properties of

conduction and refractoriness (for detailed discussion see7,8), with

slow conduction and short refractoriness making persistence of 

re-entry more likely. 

Another mechanism potentially involved in AF is ectopic activity,

which is governed by factors controlling the occurrence of

afterdepolarisations, primarily Ca2+-handling abnormalities that can

cause delayed afterdepolarisations (see Figure 1). Ectopic activity

can also result from excessive action potential duration (APD)

prolongation, which produces early afterdepolarisations. It remains

to be shown whether early afterdepolarisations contribute to 

AF pathophysiology. 

Prolonged episodes of AF alter atrial properties (‘atrial remodelling’)

promoting AF maintenance (see Figure 1).9 Changes in atrial

structure or function that constitute atrial remodelling are key

elements in the AF-substrate.7,10 Remodelling increases the

likelihood of ectopic firing or re-entry, thereby promoting AF

initiation and/or maintenance. Ion-channel remodelling shortens the

effective refractory period (ERP) by reducing APD.7,10,11 Spatially

heterogeneous ERP abbreviation promotes the conduction block

and wave break underlying fibrillatory conduction and APD

shortening contributes to AF-related atrial contractile

dysfunction.12–16 APD, and thus ERP, is determined by the balance

between inward currents that depolarise and outward currents that

repolarise cardiac myocytes (see Figure 2). 
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Studies in animal models and in patients with chronic AF have shown

that the following are major contributors to APD shortening:17–24

•    decreased L-type Ca2+ current (ICa,L; reduced depolarisation power);

•   increased inward rectifier K+ current (IK1; enhanced repolarisation

power); and

•   constitutively-active acetylcholine-independent K+ current (IK,ACh,c

enhanced repolarisation power). 

Initially the resulting shortening of APD helps to compensate for

initial Ca2+ overload (see Figure 1), but this occurs at the expense of

decreased ERP, which favours re-entry.7,25 The shorter refractoriness

together with an unchanged sodium current (INa) may promote the

induction of high-frequency sources (rotors). These undergo

complex, spatially distributed conduction block patterns with

wavefront fractionation manifesting as ‘fibrillatory conduction’ that

maintains AF.26

Long-term AF causes profound alterations in atrial structure

(cardiomyocyte hypertrophy, glycogen accumulation and interstitial

fibrosis).27,28 These lead to inhomogeneous conduction slowing that

promotes the development of anatomically-fixed re-entry circuits.

Atrial remodelling is clinically important as it explains the transition

of paroxysmal to persistent AF,9 the larger resistance of persistent

AF to treatment29,30 and higher AF recurrence rate in the first days

after cardioversion.31

Ion-channel Remodelling in Atrial Fibrillation
As introduced above, the AF-related shortening of the APD can be

attributed to decreased inward currents, enhanced outward K+

currents or a combination of both. Depolarising inward INa and 

ICa,L currents are balanced by a diversity of repolarising K+ outward

currents (see Figure 2). The main human atrial repolarising 

K+ currents include: 

•  the transient outward current, Ito;

•  the ultra-rapidly activating delayed rectifier current, IKur;

•  the rapid (IKr) and the slow (IKs) activating delayed 

rectifier currents; and

•  the three inward rectifier currents, IK1, IK,ACh and 

ATP-sensitive IK,ATP.

There is also evidence for the existence and role of Ca2+-dependent

small conductance potassium channels (SK channels) and transient

receptor potential channels in shaping the human atrial AP (see

below). Whether and how they contribute to remodelling in AF is

currently unknown.

The molecular mechanisms leading to the repolarisation changes in AF

are only partially understood. Increased atrial rate causes cellular Ca2+

loading,32 which alters cellular Ca2+ signalling leading to functional ICa,L

inactivation, which attenuates initial Ca2+ overload.33 Persistent AF

produces sustained Ca2+ loading that is offset by the decreased

function of ICa,L and by increased Ca2+ extrusion via the Na+-Ca2+-

exchanger. These compensatory changes limit cytotoxic Ca2+ influx

but cause further ERP abbreviation, favouring multiple circuit re-entry

(see Figure 1).8,10,25 The increase in intracellular Ca2+ is likely a primary

signal for altered gene expression34 and regulation of ion channels. 

Molecular Changes of INa
Sodium current (INa) density is reduced in a canine model of atrial

tachycardia remodelling (ATR), with corresponding decreases in

channel mRNA and protein expression.17 Such changes could contribute

to the atrial conduction slowing seen in AF. Despite this theory, Gaborit

et al. did not find evidence of atrial INa changes at the genomic level in

AF patients.35 Data obtained in atrial myocytes from AF patients showed

either unchanged36 or only slightly reduced37 INa amplitude. 

Molecular Determinants of ICa,L Alterations
Reduced ICa,L density is a consistent finding in animal models of ATR

and patients with AF.17–19,38 In control cardiomyocytes, inhibition of ICa,L
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Figure 1: Mechanisms Underlying Promotion of Atrial
Fibrillation by Atrial Ion Channel Remodelling

The rapid atrial rate increases potentially cytotoxic Ca2+ loading. Cells rapidly protect
themselves by reducing L-type Ca2+ current (ICa,L) at the expense of decreased action
potential duration (APD). Decreased APD abbreviates refractoriness and decreases the
wavelength (WL) allowing for smaller re-entry circuits, a larger number of which can now be
accommodated. In addition to decreased ICa,L, persistent AF increases the inward rectifier
K+ currents IK1 and constitutive IK,ACh,c and decreases connexin-40 (Cx40) and sodium
current (INa) by changing either gene expression and/or protein regulation (proteolysis and
altered phosphorylation or nitrosylation). This contributes to the APD shortening and
conduction slowing that promote AF. AF is associated with abnormal function of ryanodine
receptor channels (RyRs) producing increased diastolic sarcoplasmic reticulum Ca2+ leak.
This is amplified by the generation of an enhanced inward Na+-Ca2+-exchange current
(INCX), promoting delayed afterdepolarisations (DADs) and ectopic activity, further favouring
AF maintenance. Ectopic activity from pulmonary veins may trigger AF. SR=sinus rhythm. 
See text for further details.

Figure 2: The Atrial Action Potential and Ion Currents

The action potential is controlled by ions flowing through ion channels (inward currents,
blue arrow down; outward currents, green arrow up). The action potential upstroke (phase
0) results from a large sodium current (INa) with subsequent Ca2+ entry through L-type Ca2+

channels (ICa,L). During the plateau (phase 2) there is a balance between inward and
outward currents. Repolarisation is governed by several K+ currents including transient
outward (Ito), ultra-rapid (IKur), rapid (IKr) and slow (IKs) delayed rectifier currents. Ito and IKur
underlie early repolarisation (phase 1), IKr and IKs determine late repolarisation (phase 3),
which brings the myocyte to the resting state (phase 4). The resting potential is determined
by inward rectifier K+ current (IK1) and is modulated by acetylcholine-regulated K+ current
(IK,ACh). APD=action potential duration. See text for further details.
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with calcium-channel inhibitors mimics the APD abbreviation in ATR

and AF.17–19 Reduced ICa,L was therefore initially considered as the only

determinant of refractoriness shortening in ATR and AF. Subsequent

studies, however, indicated important contributions of increased IK1

along with constitutively active IK,ACh.21–24,39–41 The molecular basis of

decreased ICa,L in ATR and AF is complex and likely depends partly on

underlying heart disease. 

Transcriptional down-regulation of the Cav1.2 subunit, due to initial

Ca2+ overload, is one potential mechanism of reduced ICa,L

density.34,42,43 Direct measurements demonstrated that rapid pacing

quickly increases cardiomyocyte intracellular Ca2+.32In addition to this,

recent in vitro studies of tachypaced dog atrial cardiomyocytes directly

confirmed that Ca2+ influx via ICa,L itself and the related Ca2+ overload

are major determinants of the transcriptional down-regulation of ICa,L.

Here, Ca2+-calmodulin/calcineurin-related mechanisms were

implicated in modification of transcription.34 Some subsequent studies

at the mRNA and protein level confirmed the reductions in Cav1.2

subunit abundance,35,44 whereas other reports found no change in

protein amount or dihydropyridine receptor density in AF,19,45,46

suggesting the existence of alternative mechanisms.

There is evidence for increased Ca2+-channel dephosphorylation by

increased activity of type-1 (PP1) and type-2A (PP2A) serine/

threonine protein phosphatases in AF19,46,47 that is expected to reduce

the open probability, potentially explaining the decreased ICa,L

amplitude. Defective regulation of ICa,L by inhibitory src-type

tyrosine kinases may also participate in ICa,L dysregulation.46 S-

nitrosylation of the Cav1.2 subunit is increased in AF and

exogenously applied glutathione partially restores the AF-related

ICa,L reduction.48 Thus, oxidative stress could play an important role

in ICa,L changes. 

Finally, some, but not all, investigations detected decreased

expression of accessory β1, β2a, β2b, α2δ2 subunits.19,35,38,45,49 These may

also contribute to the reduction of ICa,L.

Mechanisms of Altered Voltage-gated K+-currents
Ito amplitude is consistently reduced in animals with ATR and in AF

patients.10,17,38,43,50 The functional consequences of impaired Ito are

unclear, but reduced Ito might facilitate wave propagation by

indirectly increasing the upstroke velocity of the atrial AP. 

In ATR and AF, reductions in Ito are paralleled by decreases in both

mRNA and protein expression of the pore-forming Kv4.3

subunit,43,50,51 with calpain-mediated proteolysis likely contributing to

decreased Kv4.3 protein levels.52,53 CaMKII activity is enhanced in

ATR15 and in AF patients.54,55 CaMKII accelerates Ito inactivation, but

the higher PP1 and PP2A activity in AF19,46,47 could offset the

enhanced CaMKII effect. Ca2+-dependent protein phosphatases,

such as calcineurin, may suppress Kv4.3 gene transcription via a

nuclear factor of activated T-lymphocyte-dependent mechanism56

because calcineurin activity is increased in AF.57

Results about the function of the ultra-rapid delayed-rectifier IKur are

discrepant, showing either unchanged or reduced IKur function in

AF.50 The contribution of IKur to atrial repolarisation depends on AP

morphology and is increased with short-duration triangular APs, as

occur in AF. For this reason, IKur may contribute more strongly to

atrial repolarisation in AF cardiomyocytes.58,59

Decreased39,51,60 or unchanged36,61,62 current amplitude and unaltered

mRNA or reduced protein levels of the pore-forming Kv1.5 subunit

are reported.42,61,63,64 The inconsistent results regarding IKur function

might result from variations in expression and posttranslational

modifications of the principal channel α-subunit Kv1.5, including

protein degradation due to increased proteolysis by calpains.53

Intracellular redox state is shifted to increased oxidant production in

ATR and AF65,66 and Kv1.5 currents are inhibited by S-nitrosylation.67

Variations in underlying cardiac diseases35 and/or concomitant

medication may contribute to some of the inconsistencies in various

clinical studies.50

The delayed-rectifier currents IKr and IKs are not changed in

experimental ATR17 and information from AF patients is very limited,

probably because of difficulties recording proper IKr and IKs in human

atrial myocytes isolated with the ‘chunk’ method. Initial molecular

studies in AF patients have reported decreased mRNA and protein

abundance of the HERG-subunit of IKr and varying expression

changes in the α-subunit (KvLQT1) of IKs, along with increased mRNA

and protein levels of the β-subunit minK.35,50,63 One recent study

detected higher IKs amplitude in left and right atrial myocytes of

chronic AF patients and suggested enhanced IKs as an additional

contributor to AF-related APD abbreviation.68 The function of atrial IKr

during AF is still unknown.

Molecular Basis of Altered Inward Rectifier 
K+-current Function 
The cardiomyocyte resting membrane potential is set primarily by

background inward rectifier K+ conductances. The resting membrane

potential is more negative in AF,21–24,41,69,70 which is consistent with the

increased amplitude of inward rectifier K+-current, IK1, in both dogs

with ATR and AF patients.20–24,40,41,69,71

Increased Kir2.1 mRNA21,35,72 and protein levels35,72 contribute to

enhanced IK1 in clinical AF. In dogs with ATR of up to six weeks duration,

however, Kir2.1 remains stable.43 This suggests that increased Kir2.1

mRNA is likely to be a consequence of longstanding ATR or underlying

clinical conditions in AF patients. Single-channel studies show that

increased whole-cell IK1 may result from the enhanced open 

probability in AF.22 The underlying molecular mechanisms remain to be

determined. Despite this, channel phosphorylation reduces IK1

amplitude73 and channel dephosphorylation due to increased

phosphatase activity of PP1 and PP2A19,46,47 could contribute to the

increased IK1 activity in AF. MicroRNA-1 reciprocally regulates the Kir2.1

subunit expression of IK1 in coronary artery disease, contributing to

arrhythmogenesis.74 MicroRNA-1 levels are greatly reduced in human

AF, possibly contributing to up-regulation of Kir2.1 subunits, leading 

to increased IK1.72

Increased vagal activity strongly promotes AF by stabilising atrial 

re-entrant rotors and initiation of clinical AF is more likely under

vagotonic conditions.75 Acetylcholine released from vagal nerve

endings stimulates cardiac muscarinic receptors (M-receptors) that

activate IK,ACh, which produces highly arrhythmogenic, spatially

heterogeneous decreases in atrial ERP. In knock-out mice lacking

IK,ACh, M-receptor stimulation does not induce AF.76 Besides

activation by M-receptors, atrial IK,ACh is also stimulated by

adenosine77 and sphingosine-1 phosphate78 receptors. The activation

of IK,ACh in response to receptor stimulation is reduced, however, in

ATR and AF patients.20,21,69
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Recent work suggests that the reduced receptor-mediated IK,ACh

activation is related to a loss of channel control by cardiac receptors.

This leads to increased agonist-independent constitutive IK,ACh, both

in dogs with ATR20,23,40 and in patients with chronic, but not paroxysmal,

AF.22,24,41 Blockade of constitutive IK,ACh suppresses APD abbreviation

and AF promotion in ATR preparations,23 indicating that constitutive

IK,ACh contributes to ATR-induced atrial arrhythmogenesis.

Agonist-independent constitutive IK,ACh results from the enhanced open

probability due to the increased frequency of channel openings.22,40

mRNA and protein expression of Kir3.1 and Kir3.4 subunits are

unchanged in experimental ATR.40 In AF patients, however, the mRNA

and protein levels of both subunits are decreased.21,35,41,42,63

In atrial myocardium, IK,ACh is localised in a macromolecular complex

including catalytic subunits of PKA, PKC, CaMKII, PP1 and 

PP2A.79 Altered composition of this complex in AF may lead to

abnormal phosphorylation-dependent IK,ACh regulation. Blockade of

PKC reduces, whereas inhibition of protein phosphatases 

increases, constitutive IK,ACh activity80 and the abundance of 

PKCε protein is enhanced in AF.24 This clearly suggests that 

PKC-hyperphosphorylation of IK,ACh may underlie the AF-related

development of agonist-independent constitutive IK,ACh activity.81

ATP-sensitive inward rectifier K+ currents (IK,ATP) are important

contributors to ischemia-induced changes in cardiac electrophysiology

and atrial ischaemia is likely to occur, particularly in persistent AF.

IK,ATP amplitude is higher in myocytes from AF patients under

ischaemic conditions,82 whereas IK,ATP activation in response to

agonists like rilmakalim is strongly limited.83

Data about expression of the pore-forming Kir6.2 subunit are

inconsistent.42,63 They suggest a complex and perhaps clinical

condition-dependent regulation of IK,ATP in AF.

Remodelling of Ion Channels Involved in 
Atrial Conduction
Ventricular expression and function of the major cardiac connexin,

connexin-43, is reduced by structural remodelling (gap junctional

remodelling) and these changes correlate with pro-arrhythmic

conduction slowing.84 Phosphorylation of connexins by different

kinases determines connexin trafficking, gap junction assembly and

channel-gating properties. Dephosphorylation and redistribution to

lateral cell borders are prominent and important determinants of

cardiac conduction disturbances.84,85

Relatively little is known about gap junctional remodelling in the

atria, with discrepant results in the literature showing unchanged,

increased and decreased connexin isoform expression.10,35,86 It is

possible that the specific connexin alteration depends on the time

course, underlying cardiac pathology and animal model used.87,88

Spatially heterogeneous connexin-40 remodelling is observed in 

the well-controlled goat AF-remodelling system.89 This is consistent

with the extensive clinical evidence pointing to disturbances in

connexin-40 as a basis for genetic AF predisposition.90–92

Remodelling of Other Plasmalemmal Ion Channels 
Canonical transient receptor potential channels contribute to

abnormal Ca2+ signalling in hypertrophy (for recent review see93) 

and are potentially involved in arrhythmias.94 Type-1 and type-3

transient receptor-potential channels are expressed in the human

atrium of patients with diseased hearts. Transient receptor potential

channel 3 protein expression is higher in animals with sustained 

AF and in AF patients.95 This suggests transient receptor potential

channel 3 proteins as potential novel contributors to AF-related 

ion-channel remodelling.

In a recent genome-wide association study, a single nucleotide

polymorphism that lies within the gene encoding a specific small

conductance K+ channel (SK3) was associated with lone AF.96 Human

atria express three different SK channel subunits (SK1–3).97

Overexpression of SK2 channels in mice shortens atrial AP,98 whereas

SK2 knock-out prolongs APD and induces early afterdepolarisations.99

SK channels appear to contribute to pacing-induced shortening of

APD in rabbit pulmonary veins.98 Although SK2 and SK3 channels are

potential novel contributors to AF-related ion-channel remodelling,

their precise roles in atrial remodelling require further extensive

examination and validation.

Remodelling of Ion Channels and Transporters 
that Contribute to Atrial Ectopic Activity
Multiple studies have shown that abnormal SR Ca2+ handling may

play a central role in the initiation and/or maintenance of AF in

humans.100–107 Defective Ca2+ handling was shown to predispose to

spontaneous sarcoplasmic reticulum (SR) Ca2+ release events in

atrial myocytes from patients with chronic AF.100–103 SR Ca2+ load is

not increased in chronic AF patients,100,103,105 suggesting that these

spontaneous SR Ca2+ releases most likely occurred because of

alterations in ryanodine receptor channels (RyR2) and the resulting

increase in diastolic SR Ca2+ leak. Phosphorylation of RyR2 at

Ser2808 (or Ser2809, depending on the species)101 by PKA and at

Ser2814 (or Ser2815 depending on species)54,103,108 by CaMKII is higher

in dogs with pacing-induced chronic AF and patients with chronic

AF. These posttranslational alterations increase the sensitivity of

RyR2 to cytosolic Ca2+ and enhance the open probability,101 providing

a possible molecular mechanism for aberrant RyR2 function in AF.

It is very likely that enhanced RyR2 activity plays a role in AF

pathogenesis, as mice with a gain-of-function mutation in RyR2 or

knock-out of the RyR2-inhibitory FKBP12.6 subunit exhibit an

increased susceptibility to pacing-induced AF.54,109 Using these mice

models it was demonstrated that increased SR Ca2+ leak in atrial

myocytes can promote triggered activity and atrial arrhythmias.

Altered RyR2 function in chronic AF is accompanied by an increase in

Na+-Ca2+-exchanger expression and function.12,47,103,105,110 This suggests

that diastolic SR Ca2+ leak can be amplified by the Na+-Ca2+-exchanger,

thereby triggering delayed afterdepolarisations and subsequent ectopic

focal discharges or facilitating micro-re-entry circuits promoting AF

maintenance. In addition to this, IP3 receptor (IP3R2)-mediated SR Ca2+

release may also facilitate SR Ca2+ leak via RyRs, which promotes atrial

arrhythmogenesis,111 and protein expression of IP3R2 is increased in a

model of ATR.112 IP3R2-coupled amplification of atrial SR Ca2+ release

events and related arrhythmogenesis may thus be an important

contributor to AF-related ectopic activity. 

Therapeutic Consequences of 
Ion-channel Remodelling
The changes in ion-channel function caused by AF alter the response

to antiarrhythmic drugs, principally making AF more drug-resistant.113

Atrial Fibrillation
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A poorer response of more prolonged AF has been shown for both

Na+- and K+-channel blockers.29,30,58

Early detection and termination of AF increases the clinical effectiveness

of pharmacological cardioversion.30 A strategy of early cardioversion: 

•   reduces atrial remodelling;114

•   prevents atrial dysfunction;115

•   reduces atrial size; and116

•   may prolong sinus-rhythm maintenance in the 

post-cardioversion period.116,117

Despite this, there is little evidence from clinical trials for the

therapeutic value of an early cardioversion strategy.114

Ion-channel remodelling provides a potential antiarrhythmic drug

target. Both the T-type Ca+-channel blocker mibefradil118 and

amiodarone119 suppress APD abbreviation as an index of ion-channel

remodelling. ICa,L
118,120 K+-channel and Na+-channel blockers, however,

are mostly ineffective.119 It has been assumed that prevention of 

ion-channel remodelling (suppression of ICa,L reduction) may

contribute to amiodarone’s superior efficacy in AF.119 Bepridil, a 

L- and T-type Ca2+-channel blocker, also suppresses ion-channel

remodelling indices, an action that may explain bepridil’s unusual

ability to convert long-standing AF.121

Drugs targeting atrial-selective channels such as IKur and constitutive

IK,ACh provide a promising approach because they do not affect

ventricular repolarisation.33 However, due to the remodelling

effectiveness of IKur blockers (e.g. AVE0118) is reduced in patients

with chronic AF.59

Increased inward rectifier K+ currents, such as constitutive IK,ACh,

are more effective at stabilising and accelerating AF-sustaining

rotors than reduction of ICa,L.
122 Selective inhibition of IK,ACh with the

IK,ACh-blocker tertiapin prolongs APD in ATR-remodelled canine

preparations and suppresses tachyarrhythmias.23 AVE0118 and

flecainide both inhibit constitutive IK,ACh in chronic AF patients,41

an effect that might contribute to their effectiveness in terminating

AF. However, although IK,ACh pore-channel blockers effectively

terminate AF, they could also have off-target effects in the brain,

gastrointestinal and urinary tracts. Despite this, targeting the

pathology-specific molecular mechanisms of constitutive IK,ACh may

be an effective and safe anti-AF approach that does not interfere

with physiological cholinergic agonist-stimulated IK,ACh function.

There is emerging evidence of increased diastolic SR Ca2+ leak

through RyR2 channels and enhanced Na+-Ca2+-exchanger function.

This may cause delayed after depolarisations and triggered activity

contributing to AF maintenance. Such effects suggest that the

development of new drugs specifically targeting arrhythmogenic

diastolic SR Ca2+ leak might offer unique therapeutic opportunities to

reduce atrial arrhythmogenesis by normalising SR Ca2+ handling (for

detailed discussions see33,106,123).

Inflammation and tissue oxidation are believed to be important

mediators in atrial remodelling.124 Drugs with anti-inflammatory and

antioxidant properties, such as glucocorticoids125 and statins,126

suppress atrial electrical remodelling, and have shown some clinical

value in preventing AF recurrence.127,128 Suppression of ion-channel

remodelling may thus prove to be a useful principle, as either a

primary or adjunct property of new antiarrhythmic drugs.

Conclusions
The past decade has provided important insights into key

determinants of ion-channel remodelling in both experimental

paradigms and clinical AF. Despite major advances, understanding

about the underlying molecular mechanisms leading to and

perpetuating ion-channel remodelling during AF is very limited.

Better knowledge and deeper insights into the molecular

mechanisms underlying AF may help to identify new and atrial-

selective drug targets for the improved treatment of AF. n
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