Study	Study Arms	Relevant Endpoint(s)	Outcomes/Results*	Conclusions		
	Cutting Balloon Angioplasty					
GRT ¹	CBA vs. PTCA	Binary restenosis after 6 months	CBA: 31.4% PTCA: 30.4% p=NS	No reduction in restenosis with CBA after 6 months.		
RESCUT ²	CBA vs. PTCA for ISR	Binary restenosis after 7 months	CBA: 29.8% PTCA: 31.4% p=NS	No reduction in recurrent ISR with CBA after 7 months.		
CBA before DES ³	CBA before DES vs. BA	Minimum stent CSA (mm2), Acute lumen gain (mm2)	CBA:6.26±0.4, 3.74±0.38 BA:5.03±0.33, 2.44±0.29 p=0.031, 0.015	CBA achieved larger lumen CSA and larger lumen gain compared to BA.		
Mechanisms of Acute Lumen Gain Following Cutting Balloon Angioplasty in Calcified and Noncalcified Lesions ⁴	CBA vs. BA in calcified and non-calcified group	ΔΕΕΜ CSA (mm2), ΔP+M CSA (mm2), Δlumen CSA (mm2)	Calcified lesions: CBA: 1.4±1.7, - 2.3±1.9, 3.7±1.5 BA: 1.2±1.2, - 1.8±1.9, 3.0±1.5 p=NS, NS, 0.05 <u>Non-calcified</u> <u>lesions:</u> CBA: 1.0±1.8, - 2.9±2.1, 3.9±1.9 BA: 1.6±1.8, - 2.0±1.9, 3.6±1.6 p=NS(0.11), 0.03, NS	In calcified lesions, CBA achieves a larger lumen gain vs. BA. In noncalcified lesions, there is larger plaque reduction with CBA but no difference in lumen gain vs. BA.		
	Scoring Balloon Angioplasty					
Intimal disruption and cobalt- chromium DES ⁵	SBA vs. BA	Stent expansion, lumen eccentricity, intimal disruption frequency, extent	SBA: 68%, 0.94, 68%, 122° BA: 62.1%, 0.80, 0.8, 65° p=0.017, 0.18, 0.035, 0.035	SBA achieved increased stent expansion with similar lumen eccentricity when compared with BA. SBA had more frequent and extensive intimal disruption		

Supplementary Table 1: Relevant clinical trials for the treatment of calcified coronary lesions.

				when compared with BA.	
Rotational Atherectomy					
ERBAC ⁶	RA vs. ELCA vs. PTCA	Procedural success Σ , TVR after 6 months	RA: 89%, 42.4% ELCA: 77%, 46% PTCA: 80%, 31.9% p=0.0019, 0.013	RA achieved superior procedural success when compared with ELCA and PTCA, but both RA and ELCA had unfavorable late outcomes when compared with PTCA.	
COBRA ⁷	RA vs. PTCA	Binary restenosis after 6 months	RA: 49% PTCA: 51% p=0.35	RA did not reduce restenosis after 6 months when compared with PTCA.	
DART ⁸	RA vs. PTCA in small vessels (2- 3 mm)	TVF after 12 months	RA: 30.5% PTCA: 31.2% p=0.98	RA did not reduce TVF after 12 months when compared with PTCA.	
STRATAS ⁹	Aggressive RA (B/A 0.7-0.9)] with PTCA (< 1 bar) vs. routine RA (B/A < 0.7) with PTCA (4 bar)	Binary restenosis after 6 months	Aggressive: 58% Routine: 52% p=NS	Aggressive RA debulking did not reduce restenosis after 6 months when compared with routine RA debulking.	
CARAT ¹⁰	Aggressive RA (B/A > 0.7) vs. Routine RA (B/A = 0.7)	MACE after 6 months	Aggressive: 36.3% Routine: 32.7% p=NS	Aggressive RA debulking did not reduce MACE after 6 months compared with routine RA debulking.	
ROOSTER ¹¹	RA (B/A = 0.7) vs. PTCA for diffuse ISR with IVUS guidance	TLR after 9 months	RA: 32% PTCA: 45% p=0.04	RA achieved less TLR after 9 months compared with PTCA in diffuse ISR.	
ARTIST ¹²	RA (B/A = 0.7) vs. PTCA for diffuse ISR with	MACE after 6 months	RA: 80% PTCA: 91% p=0.0052	PTCA achieved a lower MACE when compared to RA in diffuse ISR.	

	IVUS guidance in a subset			
ROTAXUS ¹³	RA with DES vs. DES	Late lumen loss (mm) after 9 months	RA with DES: 0.31±0.52 DES: 0.44±0.58 p=0.04	RA before DES achieved increased late lumen loss when compared to DES alone.
Prepare- CALC ¹⁴	RA vs. modified CSA	Successful stent delivery and expansion, late lumen loss (mm) after 9 months	RA: 98%, 0.22±0.41 CSA: 81%, 0.16±0.40 p=0.001, 0.21	RA achieved greater success at stent delivery and expansion than CSA and had similar late lumen loss rates after 9 months.
	I	Orbital Athe	erectomy	
ORBIT I ¹⁵	OA single arm	Device success [∫] Procedural success [∬] TLR, MACE after 6 months	Device success: 98% Procedural success: 94% TLR, MACE (6 months): 2%, 8%	OA successfully facilitated stent delivery with a low cumulative TLR and MACE after 6 months.
ORBIT II ¹⁶	OA single arm	Safety endpoint $^{\Omega}(95\% \text{ CI})$ Efficacy endpoint $^{\Psi}(95\% \text{ CI})$	Safety endpoint: 89.6% (86.7%- 92.5%) Efficacy endpoint: 88.9% (85.5%- 91.6%)	OA significantly exceeded the primary safety and efficacy endpoints of 83% and 82% respectively. OA also improved in- hospital and 30-day outcomes compared to historic controls with severe CAC.
	•	Laser Ather	rectomy	
LAVA ¹⁷	ELCA vs. PTCA in native vessels or SVG	MACE after 6 months	ELCA: 28.9% PTCA: 23.5% p=0.55	ELCA did not reduce MACE after 6 months compared with PTCA in native vessels or SVG.

AMRO ¹⁸	ELCA vs. PTCA in native vessels	MACE after 6 months	ELCA: 33.3% PTCA: 29.9% p=0.55	ELCA did not reduce MACE after 6 months compared with PTCA in native vessels.			
	Intravascular Lithotripsy						
DISRUPT CAD I ¹⁹	Coronary IVL single arm	Safety endpoint $^{\Omega}$ Effectiveness endpoint $^{\Psi}$	Safety endpoint: 95% Effectiveness endpoint: 98.5%	Coronary IVL safely and effectively aided stent placement with minimal perioperative complications.			
DISRUPT CAD II ²⁰	Coronary IVL single arm	Safety endpoint $^{\Omega}$ Effectiveness endpoint $^{\Psi}$ Calcium fractures measured by OCT Mean stent expansion	Safety endpoint: 100% Effectiveness endpoint: 94.2% Calcium fractures: 67.4% Mean stent expansion: 101.7%	Coronary IVL safely and effectively aided stent placement with minimal perioperative complications. OCT demonstrated that calcium fractures were an underlying mechanism for IVL. Coronary IVL allowed for excellent stent expansion.			
DISRUPT CAD III ²¹	Coronary IVL single arm	Safety endpoint $^{\Omega}$ (lower-bound of 95% CI) Effectiveness endpoint $^{\Psi}$ (lower-bound of 95% CI)	Safety endpoint: 92.2% (89.9%, p=0.0001) Effectiveness endpoint: 92.4% (90.2%, p=0.0001)	Coronary IVL safely and successfully assisted with stent delivery. The lower bounds of the 95% CI for the safety and effectiveness endpoints exceeded the performance goal of 84.4% and 83.4%, respectively.			
DISRUPT CAD IV ²²	Coronary IVL single arm	Safety endpoint Ω : CAD IV cohort vs. propensity matched	Safety endpoint: 93.8% vs. 91.2%, p=0.008	Coronary IVL safely and effectively aided stent placement with minimal perioperative complications.			

Abbreviations: ΔEEM, change in external elastic membrane; ΔP+M, change in plaque plus media; Δlumen, change in lumen or acute lumen gain; B/A, burr/artery ratio; BA, balloon angioplasty; BMS, bare-metal stent; CABG, coronary artery bypass surgery; CAC, coronary artery calcification; CBA, cutting balloon angioplasty; CI, confidence interval; CSA, crosssectional area; DES, drug-eluting stent; ELCA, excimer laser coronary angioplasty; ISR, in-stent restenosis; IVL, intravascular lithotripsy; IVUS, intravascular ultrasound; MACE, major adverse cardiac events; MI, myocardial infarction; NS, nonsignificant; NC, noncompliant balloon; OA, orbital atherectomy; OCT, optical coherence tomography; PTCA, percutaneous transluminal coronary angioplasty; PTRA, percutaneous transluminal rotational atherectomy; RA, rotational atherectomy; SBA, scoring balloon angioplasty; SVG, saphenous vein graft; TVF, target vessel failure; TVR, target vessel revascularization.

* In order of relevant endpoints; Σ Diameter stenosis < 50%, absence of death, non-Q-wave MI, or CABG; \int Residual stenosis <50% without device malfunction; $\iint <20\%$ residual stenosis; Ω 30-day freedom from MACE; Ψ residual stenosis <50% without in-hospital MACE

Source: Angsubhakorn et al. 2022.⁵⁹ Reproduced under a <u>CC BY 4.0 license</u>.

References

- Mauri L, Bonan R, Weiner BH, et al. Cutting balloon angioplasty for the prevention of restenosis: results of the Cutting Balloon Global Randomized Trial. Am J Cardiol. 2002;90(10):1079-1083.
- Albiero R, Silber S, Di Mario C, et al. Cutting balloon versus conventional balloon angioplasty for the treatment of in-stent restenosis: results of the restenosis cutting balloon evaluation trial (RESCUT). J Am Coll Cardiol. 2004;43(6):943-949.
- Jujo K, Saito K, Ishida I, et al. Intimal disruption affects drug-eluting cobalt-chromium stent expansion: A randomized trial comparing scoring and conventional balloon predilation. Int J Cardiol. 2016;221:23-31.

- Dill T, Dietz U, Hamm CW, et al. A randomized comparison of balloon angioplasty versus rotational atherectomy in complex coronary lesions (COBRA study). Eur Heart J. 2000;21(21):1759-1766.
- Mauri L, Reisman M, Buchbinder M, et al. Comparison of rotational atherectomy with conventional balloon angioplasty in the prevention of restenosis of small coronary arteries: results of the Dilatation vs Ablation Revascularization Trial Targeting Restenosis (DART). Am Heart J. 2003;145(5):847-854.
- Reifart N, Vandormael M, Krajcar M, et al. Randomized comparison of angioplasty of complex coronary lesions at a single center. Excimer Laser, Rotational Atherectomy, and Balloon Angioplasty Comparison (ERBAC) Study. Circulation. 1997;96(1):91-98.
- Sharma SK, Kini A, Mehran R, Lansky A, Kobayashi Y, Marmur JD. Randomized trial of Rotational Atherectomy Versus Balloon Angioplasty for Diffuse In-stent Restenosis (ROSTER). Am Heart J. 2004;147(1):16-22.
- vom Dahl J, Dietz U, Haager PK, et al. Rotational atherectomy does not reduce recurrent in-stent restenosis: results of the angioplasty versus rotational atherectomy for treatment of diffuse in-stent restenosis trial (ARTIST). Circulation. 2002;105(5):583-588.
- 9. Whitlow PL, Bass TA, Kipperman RM, et al. Results of the study to determine rotablator and transluminal angioplasty strategy (STRATAS). Am J Cardiol. 2001;87(6):699-705.
- Safian RD, Feldman T, Muller DW, et al. Coronary angioplasty and Rotablator atherectomy trial (CARAT): immediate and late results of a prospective multicenter randomized trial. Catheter Cardiovasc Interv. 2001;53(2):213-220.
- 11. Abdel-Wahab M, Richardt G, Joachim Buttner H, et al. High-speed rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: the randomized ROTAXUS (Rotational Atherectomy Prior to Taxus Stent Treatment for Complex Native Coronary Artery Disease) trial. JACC Cardiovasc Interv. 2013;6(1):10-19.
- Brinton TJ, Ali ZA, Hill JM, et al. Feasibility of Shockwave Coronary Intravascular Lithotripsy for the Treatment of Calcified Coronary Stenoses. Circulation. 2019;139(6):834-836.

- Saito S, Yamazaki S, Takahashi A, et al. Intravascular Lithotripsy for Vessel Preparation in Severely Calcified Coronary Arteries Prior to Stent Placement - Primary Outcomes From the Japanese Disrupt CAD IV Study. Circ J. 2021;85(6):826-833.
- 14. Abdel-Wahab M, Toelg R, Byrne RA, et al. High-Speed Rotational Atherectomy Versus Modified Balloons Prior to Drug-Eluting Stent Implantation in Severely Calcified Coronary Lesions. Circ Cardiovasc Interv. 2018;11(10):e007415.
- 15. Parikh K, Chandra P, Choksi N, Khanna P, Chambers J. Safety and feasibility of orbital atherectomy for the treatment of calcified coronary lesions: the ORBIT I trial. Catheter Cardiovasc Interv. 2013;81(7):1134-1139.
- 16. Chambers JW, Feldman RL, Himmelstein SI, et al. Pivotal trial to evaluate the safety and efficacy of the orbital atherectomy system in treating de novo, severely calcified coronary lesions (ORBIT II). JACC Cardiovasc Interv. 2014;7(5):510-518.
- 17. Stone GW, de Marchena E, Dageforde D, et al. Prospective, randomized, multicenter comparison of laser-facilitated balloon angioplasty versus stand-alone balloon angioplasty in patients with obstructive coronary artery disease. The Laser Angioplasty Versus Angioplasty (LAVA) Trial Investigators. J Am Coll Cardiol. 1997;30(7):1714-1721.
- Appelman YE, Piek JJ, Strikwerda S, et al. Randomised trial of excimer laser angioplasty versus balloon angioplasty for treatment of obstructive coronary artery disease. Lancet. 1996;347(8994):79-84.
- Nagaraja V, Kalra A, Puri R. When to use intravascular ultrasound or optical coherence tomography during percutaneous coronary intervention? Cardiovasc Diagn Ther. 2020;10(5):1429-1444.
- 20. Ali ZA, Nef H, Escaned J, et al. Safety and Effectiveness of Coronary Intravascular Lithotripsy for Treatment of Severely Calcified Coronary Stenoses: The Disrupt CAD II Study. Circ Cardiovasc Interv. 2019;12(10):e008434.
- Hill JM, Kereiakes DJ, Shlofmitz RA, et al. Intravascular Lithotripsy for Treatment of Severely Calcified Coronary Artery Disease. J Am Coll Cardiol. 2020;76(22):2635-2646.
- Maehara A, Matsumura M, Ali ZA, Mintz GS, Stone GW. IVUS-Guided Versus OCT-Guided Coronary Stent Implantation: A Critical Appraisal. JACC Cardiovasc Imaging. 2017;10(12):1487-1503.